

MID-LATITUDE WEATHER SYSTEMS

TOBY N. CARLSON

Professor of Meteorology The Pennsylvania State University

Contents

	Ded Pref Ack	ication ace nowledgements	page vii ix
1	Intr	oduction and mathematical definitions	1
	1.1 1.2	Introduction Basic units and equations Problems Further reading	1 3 25 26
2	Vor	ticity and vertical motion	27
	2.1 2.2	Vorticity Vertical motion and continuity Problems Further reading	28 44 51 51
3	The	vorticity and thermodynamic equations	52
	3.1 3.2	The vorticity equation The thermodynamic equation Problems Further reading	52 68 77 78
4	Qua pres	si-geostrophic forcing of vertical motions and surface sure tendency	79
	4.1 4.2 4.3 4.4	Derivation of the quasi-geostrophic omega equation A simple model for ω_d Pressure tendency equation An example of cyclogenesis as forced by the upper flow pattern Problems Further reading	80 86 93 102 105 107
5	Qua	si-geostrophic energetics	108
	5.1 5.2	Available potential energy Energy transformation: eddy and zonal components	111 115

CONTENTS

		5.3	Energetics of disturbances and the general circulation: a brief	110
		5.4 5.5	The energy cycle; eddy and zonal energy exchanges Barotropic growth and decay of waves Problems Further reading	118 120 126 128 129
	6	Evo viev	lution and motion of mid-tropospheric waves: barotropic vpoint	130
		6.1 6.2	Conservation of absolute vorticity; constant absolute vorticity Equivalent barotropic model Vertical motion and vorticity advection in the equivalent barotropic	131 139
		6.4	system Illustrations of 500 mb steering Problems Further reading	142 147 155 157
	7	Sim viev	ple dynamic models of wave/cyclone development: baroclinic vpoint	158
		7.1 7.2	Baroclinic development at 500 mb: a two-parameter model Large-scale developmental changes that occur at 500 mb during	158
		7.3	cyclogenesis An illustration of coupled surface and 500 mb development Problems Further reading	168 171 175 180
	8	Alte	ernative expressions for vertical motion and divergence	181
		8.1 8.2 8.3 8.4	Sutcliffe development theorem Petterssen's development equation The Trenberth approximation Mathematical unity of quasi-geostrophic forcing Problems Further reading	182 185 186 191 191 191
	9	Som effec	ne additional dynamic aspects of the baroclinic wave/cyclone: cts of friction, terrain and diabatic heating	193
		9.1 9.2 9.3	The role of friction in cyclogenesis and cloud formation Terrain-forced vertical motions: the effects of orography Diabatic forcing and convective heating Problems Further reading	193 201 211 219 219
]	10	The	evolution of cyclones	221
		10.1	Cyclone climatology	224

CO	NI	Т	E	NI	Т	C
UU	IN	L	E	N	L	0

	10.2 10.3 10.4 10.5 10.6 10.7	Evolution of the wave/cyclone during cyclogenesis Cyclone movement The mature cyclone: a satellite view Changes occurring at the tropopause Explosive cyclogenesis: coastal storms Polar lows Problems Further reading	226 233 234 241 244 257 262 262
11	Optin	num wavelength and growth rate of baroclinic waves	265
	11.1 11.2 11.3	A simple two-level model of cyclone growth in a baroclinic atmosphere Wavelength dependence for cyclone growth Summary: fundamental influences on cyclogenesis Problems Further reading	268 275 281 282 282
12	Airflo	ow through mid-latitude synoptic-scale disturbances	284
	12.1 12.2 12.3 12.4 12.5 12.6 12.7	Isentropic analysis The frozen-wave approximation Relative wind isentropic flow through baroclinic waves Cyclogenesis: the cold conveyor belt Parcel theory analog for conveyor belts Downstream development Blocking Problems Further reading	285 294 297 316 325 330 334 337 340
13	Kiner	matics of surface fronts	342
	13.1 13.2 13.3 13.4	Synoptic aspects of surface fronts Frontogenesis and the kinematics of fronts The deformation vector Deficiencies in the kinematic explanation of frontogenesis Problems Further reading	343 350 359 361 362 363
14	Ageo	strophic motion and the dynamics of fronts	364
	14.1 14.2 14.3 14.4	The four-quadrant model Isallobaric wind How a front is made The Sawyer-Eliassen <i>Q</i> -vector; equations governing	366 369 371
	14.5 14.6	transverse/vertical motion Graphical interpretation: the left-hand rule A numerical simulation of frontogenesis	378 393 397

CONTENTS	
----------	--

	14.7	Quasi-geostrophic omega equation Problems Further reading	398 402 403
15	Upp	er-tropospheric fronts and jet streaks	404
	15.1	Transverse/vertical circulations along jet streaks	406
	15.2	Confluent jets	407
	15.3	Variants of the four-quadrant model	410
	15.4	Movement of jet streaks	413
	15.5	Coupled jet streaks	417
	15.6	Stratosphere-troposphere exchanges: tropopause folding	420
	15.7	Tropopause folding and cyclogenesis	431
	15.8	Models of tropopause folding and upper-tropospheric	
		frontogenesis	436
	15.9	Turbulence and mixing in upper-level frontal zones	441
		Problems	444
		Further reading	445
16	Mid	tropospheric fronts, elevated mixed layers and the severe	
	storr	n environment	448
	16.1	The elevated mixed layer	449
	16.2	Origins of elevated mixed layers	450
	16.3	Illustrations of airflow within and below elevated mixed layers	458
	16.4	Climatology of the lid	461
	16.5	The elevated mixed layer front	464
	16.6	Severe local convection and elevated mixed layers	464
	16.7	Large-scale aspects of the elevated mixed layer	467
	16.8	Ageostrophic motion along the lid edge	473
	16.9	Differential soil moisture and static stability	476
		Problems	480
		Further reading	480
	Appe	endix: list of symbols	482
	Selec	ted references, by subject area	487
	Index	ан на н	499